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Abstract: In data clustering the more traditional algorithms are based on similarity criteria which depend on a 

metric distance. This fact imposes important constraints on the shape of the clusters found. These shapes 

generally are hyper spherical in the metric's space due to the fact that each element in a cluster lies within a 

radial distance relative to a given center. This paper propose a clustering algorithm that does not depend on 

simple distance metrics and. Therefore, it allows us to find clusters with arbitrary shapes in n-dimensional 

space. The proposal is based on some concepts stemming from Shannon’s information theory and evolutionary 

computation. Here each cluster consists of a subset of the data where entropy is minimized. This is a highly 

non-linear and usually non- convex optimization problem which disallows the use of traditional optimization 

techniques. To solve it we apply a rugged genetic algorithm. In order to test the efficiency of our proposal we 

artificially created several sets of data with known properties in a tridimensional space. The result of applying 

our algorithm has shown that it is able to find highly irregular clusters that traditional algorithms cannot. Some 

previous work is based on algorithms relying on similar approaches (such as ENCLUs’ and CLIQUE's). The 

differences between such approaches and techniques are discussed. 

Keywords: clustering, data mining, information theory, genetic algorithms.  

 

I. Introduction 
Clustering is an unsupervised process that allows the partition of a data set X in k groups or clusters in 

accordance with a similarity criterion. This process This process is unsupervised because it does not require a 

priori knowledge about the clusters. Generally the similarity criterion is a distance metrics based in Minkowsky 

Family of metrics [1] which is given by:  

dmk(P,Q) = 
p
√∑

n
i=1 │Pi - Qi│

p            
                         (1)            

 

where P and Q are two vectors in an n-dimensional space. From the geometric point of view, these metrics 

represent the spatial distance between two points. However, this distance is sometimes not an appropriate 

measure for our purpose. For this reason sometimes the clustering methods use statistical metrics such as 

Mahalanobis' [2], Bhattacharyya's [3] or Hellinger's [4], [5]. These metrics statistically determine the similarity 

of the probability distribution between random variables P and Q. In addition to a similarity criterion, the 

clustering process typically requires the specification of the number of clusters. This number frequently depends 

on the application domain. Hence, it is  usually calculated empirically even though there are methodologies 

which may be applied to this effect [6].   

 

1.1 A Hierarchy of Clustering Algorithms  

A large number of clustering algorithms has been proposed which are usually classified as follows:   

Partitional. Which discover clusters iteratively relocating iteratively elements of the data set between 

subsets. These methods tend to build clusters of proper convex shapes. The most common methods of this type 

are k-means [7], k-medoids or PAM (Partitioning Around Medoids) and CLARA (Clustering Large 

Applications) [8].    

Hierarchical. In which large clusters are merged successively into smaller clusters. The result is a tree 

(called a dendrogram) whose nodes are clusters. At the highest level of the dendrogram all objects belong to the 

same cluster. At the lowest level each element of the data set is in its own unique cluster. Thus, we must select 

the adequate cut level such that the clustering process is satisfactory. Representative methods in this category 

are BIRCH [9], CURE and ROCK [10].    

Density Based. In this category a cluster is a dense (in some pre-specified sense) region of elements of 

the data set that is separated by regions of low density. Thus, the clusters are identified as areas highly 

populated with elements of the data set. Here each cluster is flexible in terms of their shape. Representative 

algorithms of this category are DBSCAN [11] and DENCLUE [12].    
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Grid Based. Which use space segmentation through a finite number of cells and from these performs 

all operations. In this category are STING (Statistical Information Grid-based method) described by Wang et al. 

[13] and Wave Cluster [14].  

 Additionally, there are algorithms that use tools such as fuzzy logic or neural networks giving rise to methods 

such as Fuzzy C-Means [15] and Kohonen Maps [16], respectively. The performance of each method depends 

on the application domain. However, Halkidi [17] present several approaches that allow to measure the quality 

of the clustering methods via the so-called "quality indices".   

 

1.2 Desired Properties of Clustering Algorithms  

ln general a good clustering method must:  

Be able to handle multidimensional data sets.  

Be independent of the application domain.  

 

In units based on CLIQUE (Clustering in Quest) [18] algorithm where a unit is dense if the fraction of 

the elements contained in the unit is greater than a certain threshold. A cluster is the maximum set of connected 

dense units. Another work is the so-called COOLCAT algorithm [19] which also approaches the clustering 

problem on entropic considerations but is mainly focused on categorical sets of data. The difference of this 

proposal is that the space is quantized through a hypercube that encapsulates all elements of the data set. The 

hypercube is composed of units or quantization that called “hypervoxels” or, simply, “voxels”. The number of 

voxels determines the resolution of the hypercube. Contrary  to ENCLUS, this algorithm does not iterate to find 

the optimal space quantization. Here the hypercube is unique and its resolution is given a priori as a parameter. 

The units of quantization become the symbols of the sources alphabet which allow an analysis through 

information theory. This working hypothesis is that areas with high density have minimum entropy with respect 

to areas with low density.  

 

II. Generalities 
In what follows to make a very brief mention of most of the theoretical aspects having  to do with the 

proper understanding of this algorithm. The interested reader may see the references.  

 

2.1.InformationTheory  

              Information theory addresses the problem of collecting and handling data from a mathematical point of 

view. There are two main approaches: the statistical theory of communication (proposed by Claude Shannon 

[20]) and the so-called algorithmic complexity(proposed by Andrei Kolmogorov [21]). In this paper rely on the 

statistical approach in which information is a series or symbols that comprise a message. which is produced by 

an information source and is received by a receiver through a channel. 

Where:  

Message. It is a finite succession or sequence of symbols. 

Information  Source. It is a mathematical model denoted by S which represents an entity which produces a 

sequence of symbols (message) randomly. The space or all possible symbols is called source alphabet and is 

denoted as ∑ (see [22]).  

Receiver. It is the end of the communication's channel which receives the message. 

 Channel. It is the medium used to convey a message from an information source to a receiver. In this 

document we apply two key concepts which are very important for theproposal.  

Self Information. It is the information contained in a symbol si. which is defined as
1
:  

I(s) = —log2 p(s4)                                             (2)   

 

where p(si,) is the probability that the symbol si, is generated by the source S. we can see that the information of 

a symbol is greater when its probability is smaller. Thus,the self information of a sequence or statistically 

independent symbols is:  

        I(S1S2 ...Sn) = I(S1)+ I(S2) +…. + I(Sn)                            (3)  

 

Entropy. The entropy is the expected value of the information of the symbols generated by the source S. This 

value may be expressedas  

                  H(S) = ∑
n

i=1 p(si)I p(si) = -∑
n

i=1 p(si) log2 p(si)        (4) 

 

where n is the size of the alphabet ∑. Therefore, we see that entropy is greater the more uniform the probability 

distriburion of symbols is.  
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III. Geneticalgorithms 
Genetic Algorithms (GA) (a very interesting introduction to genetic algorithms and other 

evolutionary algorithms may be found in [23]) are optimization algorithms which are frequently cited as 

“partially simulating the process of natural evolution”. Although this is -a suggestive analogy behind which, 

indeed, lies the original motivation for their inception. it is better to understand them as a kind of algorithms 

which take advantage of the implicit (indeed, unavoidable) granularity or the search space which is induced by 

the use of the finite binary representation in a digital computer. In such finite space numbers originally thought 

of as existing in ℜ “actually map into B” space. Thereafter it is simple to establish that a genetic algorithmic 

process is a finite Markov chain (MC) whose states are the populations arising from the so- called genetic 

operators: (typically) selection, crossover and mutation. As such they display all of the properties of a MC. 

from this fact one may infer the following mathematical properties or a GA: 1) The results of the evolutionary 

process are independent of the initial population and 2) A GA preserving the best individual arising during the 

process will converge to the global optimum (albeit the convergence process is not bounded in time).  

For a proof of these facts the interested reader may see [24]. Their most outstanding feature is that, as opposed 

to other more traditional optimization techniques, the GA iterates simultaneously over several possible 

solutions. Thereafter, other plausible solutions are obtained by combining (crossing over) the codes or these 

solutions to obtain hopefully better ones. The solution space (SS) is, therefore, traversed stochastically 

searching for increasingly better plausible solutions. In order to guarantee that the SS will be globally explored 

some bits or the encoded solution are randomly selected and changed (a process called mutation). The main 

concern or GA-practitioners (given the fact that well designed GAs, in general, will find the best solution) is to 

make the convergence as efficient as possible. The work of Forrest et al. has determined the characteristics of 

the so-called Idealized GA (IGA) which is improvious to GA-hard problems[25]. 

 

3.1vasconcelos'GeneticAlgorithms  
The implementation or the IGA is unattainable in practice. However, a practical approximation called 

the Vasconcelos' GA (VGA) has been repeatedly tested and proven to be highly efficient [26]. The  VGA, 

therefore, turns out to be an optimization algorithm of broad scope of application and demonstrably high 

efficiency. A statistical analysis was performed by minimizing a large number or functions and comparing the 

relative performance of six optimization methods
2
 of which five are GAs. The ratio of every  GA's absolute 

minimum (with probability P=O.95 relative to the best  GA’s absolute minimum may be found in Table 1 under 

the column “Relative Performance”. The number of functions which were minimized to guarantee (he 

mentioned confidence level is shown under Number of Optimized Functions”.  

 
Algorithm Relative Performance NumberOf Optimized 

Functions 

VGA 1.000 2.736 

EGA 1.039 2.484 

TGA 1.233 2.628 

SGA 1.236 2.772 

CGA 1.267 3.132 

RHC 3.830 3.600 

Table 1.Relative Performance of Different Breeds of Genetic Algorithms 

 

It may be seen that the so-called Vasconcelos’ GA (VGA) in this study was the best of all the analyzed 

variations. Interestingly the CGA (the classical or canonical" genetic algorithm) comes at the bottom of the list 

with the exception of the random mutation hill climber (RHC) which is not an evolutionary algorithm. 

According to these results, the minima found with the VGA are, on the average, more than 25% better than 

those found with the CGA. Due to its tested efficiency,we now describe in more detail theVGA.  

Outline of vasconcelos' Genetic Algorithms (VGA) 

1. Generate random population of n individuals (suitable solutions for the problem).  

2. Evaluate the fitness f(x) of each individual x in the population. 

3. Order the n individuals from best (top) to worst (bottom) for i=l, 2.. . . . n according to their fitness.  

4. Repeat steps A-D (see below) for i = l,2....,[n/2].  

 

A. Deterministically select the i - th and the (n — i+ l) - th, individuals (the parents) from the population.  

B.With probability Pc cross over the selected parents to form two new individuals (the offspring). If no 

crossover is performed. Offspring are an exact copy of the parents.  

C.with probability Pm mutate new offspring at each locus (position in individual).  

D. Add the offspring to a new population  
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5. Evaluate the fitness f(x) of each individual x in the new population  

6. Merge the newly generated and the previous populations  

7. If the end condition is satisfied, stop. and return the best solution.  

8. Order the n individuals from best to worst (i=1, 2, . . . . n) according to their fitness  

9. Retain the top n individuals; discard the bottom n individuals  

10. Go to step 4  

 

                As opposed to the CGA. the VGA selects the candidate individuals deterministically  picking the two 

extreme (ordered according to their respective fitness) performers or the generation for crossover. This would 

seem to fragrantly violate the survival-of-the-fittest strategy behind evolutionary processes since the genes or 

the more apt individuals are mixed with those of the least apt ones. However. the VGA also retains the best n 

individuals out of the 2n previous ones. The net effect of this dual strategy is to give variety to the genetic pool 

(the lack of which is a cause for slow convergence) while still retaining a high degree of elitism. This sort or 

elitism, or course. guarantees that the best solutions are not lost. On the other hand. the admixture or apparently 

counterpointed plausible solutions is aimed at avoiding the proliferation of similar genes in the pool. In nature 

as well as in GAs variety is needed in order to ensure the efficient exploration of the space of solutions
3
. As 

stated before. all GAs will eventually converge to a global optimum. The vGA does so in less generations. 

Alternatively we may say that the VGA will outperform other GAs given the same number of generations. 

Besides, it is easier to program because we need not to simulate  a probabilistic process. Finally. the VGA is 

impervious to negative fitness’s values .We, thus, have a tool which allows us to identify the best values tor a 

set or predefined metrics possibly reflecting complementary goals. For these reasons we use in our work the 

VGA as the optimization method. In what follows we explain our proposal based in the concepts mentioned 

above.  

 

IV. Evolutinary Entropic Clustering 
Let X be a data  set of elements xi, such that xi={x1,x2. ..... ,xin}. let D he an n dimensional space such that xi C 

D and let cj be  a subset or D called cluster. Then we must find a function that associates each element of X to 

the j-th cluster cj, as:  

 

f(xi)=cj;Ɐxi ε X ˄ 2 ≤  j ≤ k          (5) 

where K is the number of clusters and f(xi) is called the membership function. Now we describe a method 

which attempts to identify those elements within the data set which share common properties. These properties 

are a consequence of (possibly) high order relationships which we hope to infer via the entropy of a quantized 

vector space. This space. in what follows, will be denoted as the Hpercubic Wrapper.  

 

4.1 Hpercubic Wrapper  

A Hpercubic Wrapper denoted as HW is an n-dimensional subspace of D such that:  

xi € HW  Ɐ xi€ X                          (6) 

 

HW is set of elements is called voxels, which are units in ,n-dimensional that can contain zero or more elements 

of the set X. The cardinality or HW depends on the maximum number of voxels that we specify in each 

dimension of the space D such that:    

│HW│=∏
n 

i=1.Li                              (7) 

 

where Li is the number or voxels in the i-th dimension and n is the dimension number of D. From equation (7) it 

follows that ⱯVm € HW:  

 0<m≤∏
n
i=1Li                              (8) 

 

where α is the number the elements that belong to the data set X and β is the number or symbol within 

cluster i. This constraint ensures that entropy is minimal within any given cluster. The algorithm yields a best 

individual which represents a set of clusters or symbols that are map into sets of voxels in the subspace HW, as 

shown inFig.3.  
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Fig.1.Hypercubic Wrapper in a tri-dimensional space where the points represent elements of the data set and the 

subdivisions are voxels. 

 

 
Fig.2. Hypercubes with different lengths per dimension 

 

In what follows we show some experiments that allow us to test the effectiveness of the algorithm presented 

previously  

 
Fig.3. Possible clustering delivered by the VGA. Different intensities in the cube represent a different cluster 

.(White voxels are empty). 

 

V. ExperimentaI Results  
Our algorithm was tested with a synthetic data set which consists of a set of points contained by three disjoint 

spheres. The features and parameters of the first test are given in Table 2. The values of the parameters were 

determined experimentally.  

The VGA was run 20 times (with different seeds or the pseudo random number generator yielding an 

average effectiveness of 98%. Notice that no information other than  the number of clusters is fed to FGEEA. 

The same data set was tested with other algorithms such as Kohonen Maps and Fuszi C-Means, The results 

obtained are showninTable3, This us allow see that the result of our proposal is similar to result given by me 

alternative algorithms. The high effectiveness in all cases is probably due to the spatial distribution of data set. 

Next, we test with other data set whose spatial distribution yields presents overlapping clusters as is shown in  

 

 

 

 

Fig. 4. For clarity we show a bi-dimensional example. The actual runs consisted of threedimensionaldata. 
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Feature Value Parameter Value 

Sample Size 192 N(Number of 

individuals) 

500 

Elements per 

cluster 

64 G(Generations) 1000 

Dimensions 3 Pm(Mutation 

Probability) 

0.001 

Cardinality Disjoint 

sphere 

Pc(Crossover 

Probability) 

0.99 

Table 2.Features and Parameters first test 
 

Algorithm Average Effectiveness 

Kohonen Maps 0.99 

Fuzzy C.Means 0.98 

Table 3.Results obtained with Kohonene Maps and Fuzzy C-Means 
 

In this case the size sample is 192. Its elements are, a priori, distributed in three clusters. The cardinality is 64 in 

all cases. The results obtained are shown in Table 4.  

 

 
Fig .4.Overlapping clusters 

 
Algorithm Average Effectivenes 

Kohonen  Maps 0.62 

Fuzzy C-Means 0.10 

FGEEA 0.73 

Table 4.Results of FGEEA with overlapping data set 

 

 
Fig.5 .Irregular clusters. The number of voxels is 15625(25 voxels per dimension).The White voxels are empty. 

 

Here the effectiveness decreases significantly in general. But FGEEA showed the better results. Finally 

we tested our algorithm with a data set in tridimensional space with an unknown spatial distribution. For k = 3 

(number or clusters) the algorithm found a solution that is shown in Fig. 5. Here the clusters are 

irregularlyshaped. These last results were not compared with other clustering algorithms. However. we can see 

that in principle this approach is feasible.  

 

VI. Conclusions And Future Work 
These results allow us to test the feasibility of our algorithm. This is not enough. However, to assume 

its effectiveness in general. To achieve this proof we require testing with several data sets and applying more 

solid clustering validation techniques. Computationally, the analysis of the geometric and spatial membership 

relation between elements or a multidimensional data set is hard. Our approach showed that in principle, 

membership relations in a data set can be round through or its entropy without an excessive demand on 

computational resources. Even though the results obtained are limited (since they correspond to particular cases 
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and in tri-dimensional data) they are promissory. Therefore, future work requires to generalize our method for a 

data set in n-dimensional space (with n>3). to analyze its computational complexity and to test its detailed 

mathematical formulation. we will report on these issues shortly.  
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